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Abstract 
Some simple guidelines based on the accuracy in deter- 
mining a satellite formation’s semi-major axis differences 
are useful in making preliminary assessments of the nav- 
igation accuracy needed to support such missions. These 
guidelines are valid for any elliptical orbit, regardless of 
eccentricity. Although maneuvers required for formation 
establishment, reconfiguration, and station-keeping require 
accurate prediction of the state estimate to the maneuver 
we, and hence are directly affected by errors in all the or- 
bital elements, experience has shown that determination of 
orbit plane orientation and orbit shape to acceptable levels 
is less challenging than the determination of orbital period 
or semi-major axis. Furthennore, any differences among 
the member’s semi-major axes are undesirable for a satel- 
lite formation, since it will lead to differential along-track 
drift due to period differences. Since inevitable navigation 
errors prevent these differences from ever being zero, one 
may use the guidelines this paper presents to determine 
how much drift will result from a given relative naviga- 
tion accuracy, or conversely what navigabon accuracy is 
required to limit drift to a given rate. Since the guidelines 
do not account for non-two-body perturbations, they may 
be viewed as useful preliminary design tools, rather than 
as the basis for mission navigation requirements, which 
should be based on detailed analysis of the mission con- 
figuration, including all relevant sources of uncertainty. 

Introduction 
One of the most significant differences between many for- 
mation flying satellite missions that are currently of inter- 
est, and the intentionally close approaches that past mis- 
sions have performed - e.g. rendezvous, docking, and prox- 
imity operations of the Space Shuffle - is the need for 
long-term and efficient maintenance of relatively close for- 
mations. As of 2002, separations of a few hundred kilorne- 
ters have been achieved for long-duration formations, and 
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in the next few years separations in the range of 100 m to 
10 km are expected to be attempted. Ref. 1 describes some 
relevant aspects of one such recent mission. 

Many perturbations affect the accuracy of maneuvers re- 
quired to maintain these formations, but in principle the 
maneuver planning process can accommodate all known 
perturbations. However, the navigation errors at the time of 
the maneuver computation will form a lower bound on the 
accuracy of the maneuvers, since even a perfectly executed 
maneuver will “lock in” the navigation errors. Indeed, 
Ref. 2 suggests that velocity uncertainty may be the lim- 
iting technology for formation flying. 

Although the errors in all the states will affect the maneu- 
ver, as Ref. 3 discusses, semi-major axis error is the most 
difficult to estimate. An essential point of Ref. 3 is that 
(for circular orbits) semi-major axis uncertainty depends on 
three quantities: the radial position error, the along-track 
velocity error, and the correlation between these errors, 
which arises due to the the conservation of energy. The 
most notable consequence of semi-major axis differences 
for a formation of satellites is relative drift in the direc- 
tion of the orbital path, which Figure 2 illustrates. For 
the relatively high-thrust, short burning propulsion systems 
flown on current missions, the result of this drift will be 
more frequent stationkeeping maneuvers. For “continuous” 
low-thrust systems proposed for many upcoming missions, 
this drift will be random error that must be counteracted, 
limiieed by the accuracy of the navigation feedback signal. 
Figure 1 illustrates the effect of the various contributors 
to along-track drift in a circular orbit, based on the rela- 
tionships of Ref. 3. To interpret Figure 1, consider a nav- 
igation system that can produce radial accuracy of 10 cm, 
and speed accuracy of 0.1 mm/sec. Figure 1 indicates that 
the corresponding along-track drift may be on the order of 
1 mlorbit, and could be as poor as about 3 m/orbit, if the 
correlation between radius and speed, prv ,  is poor. 

Ref. 4 describes a necessary condition for obtaining a 
no-drift solution in eccentric orbits in a deterministic set- 
ting. Ref. 1 describes requirements on relative semi-major 
axis knowledge and control for relative drift of the GRACE 
mission due to differential drag. The contribution of the 
development below is to describe and quantify the relative 
drift issue in tenns of the @on-deterministic) navigation er- 
rors for elliptical orbits, generalizing the results of Ref. 3. 
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Fig. 1 Along-track drift due to semi-major axis error for a typical low earth orbit3 Each family of contours is based on a 
constant semi-major axis error, resulting from various combinations of radial position error, along-track velocity error, and the 
correlation between these. 
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Fig. 2 Along-track drift due to semi-major axis differences 
between two spacecraft in a highly elliptical orbit. 

The paper concludes with examples in low circular and 
high apogee elliptical Earth orbit missions. 

Development 
For every complete revolution in any two-body elliptical or- 
bit, an error in knowledge ofthe orbit period, 6Tp, results in 
an along-track error growth proportional to the speed (ve- 
locity magnitude), t~, 

where fi is the initial true anomaly. It is not hard to show 
(viz. Ref. 3) that 

6Tp=37i -6a ti; 
where a is the semi-major axis and p is the gravitational 
constant, G M ,  so that 

6 S ( f i  + 2T) = -3TV(fi + 2%)ficZ (3) 

At periapse, 

v(0) = V ( 0 , 2 % ,  . . .) = E/= (4) 1 - e  

where e is the eccentricity, and so the in-track growth per 
orbit at periapse is 

while at apoapse, 

1 - e  
a l + e  

V(T) = V ( T ,  3%, . . .) = J'd- 
and hence the in-track growth per orbit at apoapse is 

I 
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Since according to Eq. (5) or (7) the along-track error 
growth per orbit is linear in the semi-major axis error, their 
error distributions share this linear relationship. For exam- 
ple their standard deviations are related by 

-a&) = 3 ? i p - a a  
l + e  

Ref. 3 gives the following relation, valid for circular orbits, 
among semi-major axis error, radius error, speed error, and 
the correlation between radius and speed errors, prv :  

where n is the mean motion. Note that the velocity terms 
in Eq. (9) are with respect to an inertial Game. Relative to 
a frame rotating at the (constant) orbital angular velocity, 
such as Hill's Game, 

4 1 
ffa = 2 4 4  + -pry-ar-aQ + --a? (10) 

J n  n2 Y 

where y in Eq. (1 0) refers to the along-track component of 
velocity relative to the rotating Game. 

The general form of the semi-major &vis variance, also 
given in Ref. 3, is 

where the state is xT = [rT, vT], r is the position, v is the 
velocity, Px is the state error covariance, xref is given, and 

Applying Eq. (1 1) at apoapse, and using Eq. (7), it is not 
hard to show that Eq. (9) may be generalized to 

or similarly at periapse to 

1 l f e  
+ 7 (G) -a: (14) 

To get an expression for the semi-major axis variance at 

any point in the orbit, the following relationships are useful: 

w, = E e s i n j  (15) 

un 

rl 
- - -  

an2 2 
= ;;.(P) 

where 77 = d = .  From the definition of Eq. (12), ba = 
A(xref)bx, which may be written in terms of radial and 
along-track components, z and y, respectively, as 

P = - 2a2 [ wrbw, + wy6w, + -7%] , (21) 
P 

Using Eqs. (15) - (20) in Eq. (21), it is not hard to show 
that 

[esin(f)bv, +(1 +ecos f)bv,] 

Taking the expectation of the square of Eq. (22), and as- 
suming a zero mean, results in the following expression for 
the semi-major axis variance at any point in an elliptical 
orbit: 

- - 
4 

(1 + ecos f)~rv,-argv,] 
2e(sin f + e sin f cos f )  

(n42 
+ Pu,v, U U %  ffv, (23) 

If the correlations between radius and radial velocity, 
prv, , and between radial velocity and along-track velocity, 
P ~ , ~ ,  , can be assumed to be insignificant, then the follow- 
ing simpler expression results: 

-a: ( 1 + e c 0 s f ) ~  
4 vs ar _ -  - 
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Fig. 3 Semi-major axis uncertainty as a function of true 
anomaly for a particular high Earth orbit example. 

Figure 3 illustrates Eq. (24) for a particular example. Note 
that different relationships among ar, a,,,, and u,,= than 
Figure 3 shows produce quite different results. 

In most satellite formations, it is desirable for the satel- 
lites to minimize their semi-major axis differences so as to 
minimize relative along-track drift. The general fonn of 
the variance of the relative semi-major axis between any 
two satellties i and j, also given in Ref. 3, is 

& = A(x,)fiA(xi)T + A ( x j ) P j A ( ~ j ) ~  
- A ( x ) P c j A ( ~ j ) ~  - A ( x j ) P z A ( ~ i ) ~  (25) 

where Pi, = PxCxj. To approximate and simplify Eq. (25), 
assume that the satellites in the formation have approxi- 
mately the same a and e, that their navigation errors have 
the same distributions, and that Pij = pijPi. Then, the 
version of Eqs. (13) - (14) and (23) - (24) corresponding 
to relative semi-major axis errors is 

C7Aa = d-’fla (26) 

Therefore, as in Eq. (8), the standard deviation of the in- 
track drift per orbit between any two satellites in a foFa- 
tion, evaluated~at~each apoapse, i s  relakd to their relative 
semi-major axis standard deviation by 

I 

UAs(3T) = -3T 

In a good orbital navigation filter, -1 < prv 5 -.9, 
due to the dynamical constraint imposed on the estimates 
by conservation of energy’. A consequence of the high 
correlation between radius and speed errors is that speed 
error may be viewed as a dependent variable of radius error. 
Lear5 gives the following approximation of the speed mor 
required to “balance” a corresponding radius error: 

“Ref. 5 shows that one should not always assume that GPS-based or- 
bital navigation systems properly account for this constraint 

Eq. (25) gives the speed error that produces the same size 
error in semi-major ayis as the given radius error. Table 1 
gives some numerical examples of Eq. (28). If Eq. (28) 

Table 1 Speed uncertainty, u f [ d s ] ,  “balancing” radius un- 
certainty for a range of eccentricities, according to JZq. (28). 

1.2e-05 0.00022 0.0039 0.070 

holds, then in-track drift per orbit may be viewed as a func- 
tion of the radius error only. 

If there are no relative measurements, but instead each 
satellite’s absolute state is estimated separately, e.g. from 
GPS pseudoranges, pij may be quite small. If the filter 
processes relative measurements such as cross-link ranges 
and/or GPS meausurement differences, pi j  0.9 may be 
a reasonable assumption. Based on the assumptions that 
pjj = 0.9, that the approximate velocity constraint of 
Eq. (28) is valid, and that the radius and speed are well- 
correlated (prv = -.9), Figure 4(a) gives some examples 
of relative drift due to semi-major axis error for various ec- 
centricities, for Earth-orbiting formations. The left subplot 
illustrates drift rates at apogee, and the right subplot drift 
rates at perigee. From the figure, it is clear that as eccen- 
tricity increases, the formation will drift apart more slowly 
at apogee, and more quickly at perigee, for a given radius 
or semi-major &,is error. 

Figure 40) shows similar results, instead assuming no 
correlation between the two satellites’ state estimates. Fig- 
ure 4(c) shows some additional results, in which a “fudge 
factor” of 50% is applied to Eq. (28), and zero correlations 
assumed. This is intended to capture the type of “poor” ve- 
locity estimation that Ref. 3 describes may occur with some 
GPS-based orbit determination systems. 

Finally, it may be of interest to determine the time to 
drift a given distance due to a semi-major axis  error. Since 
time-to-drift depends inversely on the drift rate, a nonlinear 
mapping of the statistical moments of the drift rate per orbit 
is required to find the statistics of the time to drift a given 
distance. Let D be the deadband size, i.e. the size of the 
“control box” in which the satellite must remain, and 7 be 
the time to reach the deadband. Assume that the relative 
navigation errors are zero-mean and Gaussian, then due to 
their linear relationship, the relative drift rate also has a 
Gaussian probability density, 

 AS) = - 1 exp (-$) (29) d2Ezc 2UA* 

Since 

is a nonlinear function, its probability density may be found 
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in terms of Eq. 29 via6 

Peigee n 

(31) 
fi (xi> 

f Y h )  = c ml 
\ * q=g-l(y)  

where the 2; are the values of z where y = g(2). Using 
Eqs. (29) and (30) in Eq. (3 1) results in 

fT(7) = 6- 2 D  exp (--) D2 (32) 
5i U&T2 2 4 3  ’ 

where the fact that the deadband is reached uith a positive 
or negative drift rate has been used. 

Figures S(a) and S(b) show the probability density and 
the probability of not reaching the deadband in time T for 

Figure 5(b) can be used for finding the minimum accept- 
able value of the deadband For example, if one wants 
there to be a 75% probability that the deadband will not 
be reached in four orbits, then D/ah, > 5, keeping in 
mind that this analysis does not include perturbations such 
as differential drag or thrust errors. 

M various values of D/uA,. 

a) p i j  = 0.9. 
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Suppose there is some interest in flying a high-eccentricity, 
e == 0.8, formation flying mission, in which the satellites 
are supposed to be 10 km apart at apogee. If the separa- 
tion varies by more than 10% at apogee, or if there is some 

duration, relatively high-thrust stationkeeping maneuvers. 
In order to maximize the science return and mission du- 
ration, such maneuvers should not occur more often than 

0.01 0.1 le*M every four weeks. The orbit period is approximately one 
day, so the relative driR at apogee must be less than one 
kilometer per 28 orbits, or about 36 meters per orbit. Con- 
sulting Eq. (27), the relative semi-major axis error should 
therefore have a “one si,ma’’ value of 36/x = 11 me- 
ters. If relative navigation system is highly correlated, i.e. 
pTV = -.9 and pij  = 0, Figure 4(a) indicates that a “one 
sigma” radius error of about 55 meters at apogee should be 
suficient to meet the 10% requirement in a “one sigma” 
sense. If the navigation system is not well-correlated, i.e. 
p r ,  = pi.j = 0, and the relative velocity errors dominate as 
with many of the GPS systems described in Ref. 3, then 
Figure 4(c) indicates that a “one sigma” radius error of 
about 2 meters would be necessary to meet the 10% re- 
quirement. 

Note however that at perigee, the 1 1 meter relative semi- 
major axis error would produce a drift of about 3 10 meters 
per orbit, which may be found using Eq. (5). From Fig- 
ure 4(a), this drift corresponds to a radius error of 0.6 m 
for a well-correlated system. For a poorly correlated sys- 
tem like Figure 4(c) illustrates, the corresponding radius 

For most elliptical orbit formations, the separation will in- 
crease at perigee, so a few kilometer change in relative 
position may amount to much less than 10%. However, 

5 KJoo 
E 
5 lo 

j 1  e 
a danger of a collision, the satellites must perform short- 2 2 100 
- 
:: 10 
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b) p i j  = 0. 

e) ‘‘Poor“ velocity accuracy and zero correlations. 

Fig. 4 Relative drift per orbit due to semi-major axis error error that would be at perigee is about O.I5 m. 
for various eccentricities 
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Fig. 5 Driftprobabilities. 

there do exist elliptical orbit formations for which separa- 
tion at perigee decreases relative to apogee, in which case 
a collision avoidance maneuver might be required much 
more o h  than desired unless the navigation error could 
be further reduced. 

Next, suppose a low-Earth orbiting (550 km altitude), 
leader-follower mission is proposed in which the separa- 
tion distance is 60 m, and this must be maintained within 
f 2 0  m. The mission will use a highly accurate differen- 
tial Global Positioning System relative navigator, which 
can determine relative position to within 6 cm, and relative 
velocity to within 2 mm/sec, “one sigma,” per axis. From 
Figure 1, one can see that the corresponding drift uncer- 
tainty is about 3 m, that the velocity noise is the limiting 
error, and that the positiodvelocity noise combination is 

In-track displacement 
130, , I 

I I I1 I 
I1 I 1 

40 100 
Tit%- $$its 70 
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Fig. 6 Along-track control error time history for LEO leader- 
follower formation with semi-major axis errors. 

such that the value of the correlation coefficient has a re- 
duced effect, since the dominating velocity noise places the 
positidvelocity noise combination above and to the left of 
the main diagonal of the fiewe, which is where the curves 
split based on correlation coefficient (this is consistent with 
the findings of Ref. 2). It therefore seems appropriate to 
use the poorly correlated example of Figure 4(c) to assess 
the drift rate per orbit, from which one can determine the 
drift to be about 5 in per orbit. For a 20 m deadband, one 
should therefore interpolate between the D/oas = 3 and 
D/aas = 5 curves of Figure 5(b), from which it is possible 
to determine that there is about an 80% probability that the 
deadband will not be reached in less than about 5 orbits, 
or equivalently that there is a 20% probability that every 
5 orbits, the deadband will be reached. 

Finally, Figure 6 demonstrates the effect that relative 
navigation error has on a formation. The figure shows the 
along-track relative motion time history for one week (1 05 
orbits) for a leader-follower formation with a desired sepa- 
ration of 100 m with the 2 mm’s relative velocity and 6 cm 
relative position relative navigation errors described above. 
The relative state control strategy is a minimum fuel in- 
track impulsive strategy in which each maneuver consists 
of three impulses separated by 0.5 orbits. A maneuver is 
initiated when 75% (15 m) of the deadband of 20 in is 
reached.’ To initiate relative motion there is differential 
drag, but after the first maneuver the differential drag is set 
to zero and the only error is the relative navigation error. 
As Figure 6 shows, when there is a high drift rate due to 
the semi-major axis error the deadband is exceeded. 

Conclusion 
This paper has presented some guidelines on relative nav- 
igation that may be useful for conceptual analysis of for- 
mation flying missions. These guidelines generalize pre- 
viously reported formulae to the case of elliptical orbits. 
Since the guidelines do not account for non-two-body per- 
turbations, they may be viewed as useful preliminary de- 



sign tools, rather than as the basis for mission navigation 
requirements, which should be based on detailed analysis 
of the mission confi,wation, including all relevant sources 
of uncertainty. 

Acknowledgment 
The development of this paper benefited from conversa- 
tions with David Folta and Jon How. 

References 
‘Kirschner, M., Montenbrk O., and Bettadpur, S., “Flight Dynamics 

Aspects of the GRACE Formation Flying,” 2nd International Workshop 
on Satellite Constellations and Formation Flyins, CNES, Haifa, Israel, 
February 2001. 
‘How, J. P. and Tillenon. M., “Analysis of the Impact of Sensor Noise 

on Formation Flying Con&$ Procffidings of thl American Contml 
Conference, 2001,pp. 3986-3991. 

3Carpenter, J. R. and Schiesscr, E. R., “Semimajor Axis Knowledge 
and GPS Orbit Determination,” N.WIGATION Journal of The Institute 

VoL 4S, No. 1, Spring 2001, pp. 57-68! also . U S  Paper 
99-190, Feb., 1999. 

41nalhan. G., Tillerson, M., and How, J. P, “Relative Dynamics 
and Control of Spacecraft Formations in Eccentric Orbib:’ Journal of 
Guidance, Control and Dynamics, Vol. 25, No. 1,2002, pp. 48-59. 

5Lear, W. M., “Orbital Elements including the 12 Harmonic,” Tcch 
Rep. 86-FM-1 8, JSC-22213, Rev. 1, Mission Planning and Analysis Di- 
vison, NASA Johnson Space Center, Houston, TX, 1987. 

GPapoulis, A,, Probabilitl: Random Variables. and Stochastic 
Processes, McGraw-Hill, 1984. 

’Alfriend. K. T. and Lovell, T. A, Tormation Maintenance for Low 
Earth Near-Circular Orbits,” 
American .4stronautical Society, Univelt, San Diego, CA, 2003. 


